Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2313849, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465849

RESUMO

Tick-borne encephalitis virus (TBEV) causes a severe disease, tick-borne encephalitis (TBE), that has a substantial epidemiological importance for Northern Eurasia. Between 10,000 and 15,000 TBE cases are registered annually despite the availability of effective formaldehyde-inactivated full-virion vaccines due to insufficient vaccination coverage, as well as sporadic cases of vaccine breakthrough. The development of improved vaccines would benefit from the atomic resolution structure of the antigen. Here we report the refined single-particle cryo-electron microscopy (cryo-EM) structure of the inactivated mature TBEV vaccine strain Sofjin-Chumakov (Far-Eastern subtype) at a resolution of 3.0 Å. The increase of the resolution with respect to the previously published structures of TBEV strains Hypr and Kuutsalo-14 (European subtype) was reached due to improvement of the virus sample quality achieved by the optimized preparation methods. All the surface epitopes of TBEV were structurally conserved in the inactivated virions. ELISA studies with monoclonal antibodies supported the hypothesis of TBEV protein shell cross-linking upon inactivation with formaldehyde.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Anticorpos Antivirais , Microscopia Crioeletrônica , Vacinas de Produtos Inativados , Formaldeído
2.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289609

RESUMO

Chaperonins, a family of molecular chaperones, assist protein folding in all domains of life. They are classified into two groups: bacterial variants and those present in endosymbiotic organelles of eukaryotes belong to group I, while group II includes chaperonins from the cytosol of archaea and eukaryotes. Recently, chaperonins of a prospective new group were discovered in giant bacteriophages; however, structures have been determined for only two of them. Here, using cryo-EM, we resolved a structure of a new chaperonin encoded by gene 228 of phage AR9 B. subtilis. This structure has similarities and differences with members of both groups, as well as with other known phage chaperonins, which further proves their diversity.

3.
Biochim Biophys Acta Gen Subj ; 1866(7): 130139, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390487

RESUMO

BACKGROUND: To date, EVs characterization techniques are extremely diverse. The contribution of AFM, in particular, is often confined to size distribution. While AFM provides a unique possibility to carry out measurements in situ, nanomechanical characterization of EVs is still missing. METHODS: Blood plasma EVs were isolated by ultracentrifugation, analyzed by flow cytometry and NTA. Followed by cryo-EM, we applied PeakForce AFM to assess morphological and nanomechanical properties of EVs in liquid. RESULTS: Nanoparticles were subdivided by their size estimated for their suspended state into sub-sets of small S1-EVs (< 30 nm), S2-EVs (30-50 nm), and sub-set of large ones L-EVs (50-170 nm). Non-membranous S1-EVs were distinguished by higher Young's modulus (10.33(7.36;15.25) MPa) and were less deformed by AFM tip (3.6(2.8;4.4) nm) compared to membrane exosomes S2-EVs (6.25(4.52;8.24) MPa and 4.8(4.3;5.9) nm). L-EVs were identified as large membrane exosomes, heterogeneous by their nanomechanical properties (22.43(8.26;53.11) MPa and 3.57(2.07;7.89) nm). Nanomechanical mapping revealed a few non-deformed L-EVs, of which Young's modulus rose up to 300 MPa. Taken together with cryo-EM, these results lead us to the suggestion that two or more vesicles could be contained inside a large one being a multilayer vesicle. CONCLUSIONS: We identified particles similar in morphology and showed differences in nanomechanical properties that could be attributed to the features of their inner structure. GENERAL SIGNIFICANCE: Our results further elucidate the identification of EVs and concomitant nanoparticles based on their nanomechanical properties.


Assuntos
Exossomos , Nanopartículas , Módulo de Elasticidade , Microscopia de Força Atômica , Plasma
4.
Biomedicines ; 9(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829878

RESUMO

The molecular chaperone GroEL is designed to promote protein folding and prevent aggregation. However, the interaction between GroEL and the prion protein, PrPC, could lead to pathogenic transformation of the latter to the aggregation-prone PrPSc form. Here, the molecular basis of the interactions in the GroEL-PrP complex is studied with cryo-EM and molecular dynamics approaches. The obtained cryo-EM structure shows PrP to be bound to several subunits of GroEL at the level of their apical domains. According to MD simulations, the disordered N-domain of PrP forms much more intermolecular contacts with GroEL. Upon binding to the GroEL, the N-domain of PrP begins to form short helices, while the C-domain of PrP exhibits a tendency to unfold its α2-helix. In the absence of the nucleotides in the system, these processes are manifested at the hundred nanoseconds to microsecond timescale.

5.
Sci Rep ; 11(1): 18241, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521893

RESUMO

The GroEL-GroES chaperonin complex is a bacterial protein folding system, functioning in an ATP-dependent manner. Upon ATP binding and hydrolysis, it undergoes multiple stages linked to substrate protein binding, folding and release. Structural methods helped to reveal several conformational states and provide more information about the chaperonin functional cycle. Here, using cryo-EM we resolved two nucleotide-bound structures of the bullet-shaped GroEL-GroES1 complex at 3.4 Å resolution. The main difference between them is the relative orientation of their apical domains. Both structures contain nucleotides in cis and trans GroEL rings; in contrast to previously reported bullet-shaped complexes where nucleotides were only present in the cis ring. Our results suggest that the bound nucleotides correspond to ADP, and that such a state appears at low ATP:ADP ratios.


Assuntos
Difosfato de Adenosina/química , Chaperonina 10/química , Chaperonina 60/química , Proteínas de Escherichia coli/química , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Ligação Proteica
6.
Polymers (Basel) ; 12(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327520

RESUMO

Nowadays, polypropylene-based nonwovens are used in many areas, from filtration to medicine. One of the methods for obtaining such materials is melt electrospinning. In some cases, it is especially interesting to produce composite fibers with a high degree of filling. In this work, the influence of the filling degree of isotactic polypropylene with calcium carbonate on the structure and properties of nonwoven materials obtained by melt electrospinning was studied. It was shown that electrospinning is possible, even at a filler content of 50%, while the average diameter of the fibers increases with the growth in the content of calcium carbonate. The addition of sodium stearate significantly reduces the diameter of the fibers (from 10-65 to 2-10 microns) due to reducing viscosity and increasing the electrical conductivity of the melt. Wide-angle X-ray diffraction analysis and IR spectroscopy reveal that the initial polymer and composites are characterized by the presence of stable α-form crystals, while nonwovens show a predominance of smectic mesophase. The addition of calcium carbonate leads to an increase in the hydrophobicity of the composite films, the addition of sodium stearate results in a decrease of hydrophobicity, while all nonwovens demonstrate superhydrophobic properties.

7.
RNA ; 26(6): 715-723, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144191

RESUMO

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Assuntos
Antibacterianos/química , Eritromicina/análogos & derivados , Inibidores da Síntese de Proteínas/química , Ribossomos/química , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Eritromicina/química , Eritromicina/farmacologia , Escherichia coli/genética , Modelos Moleculares , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/química
8.
J Struct Biol ; 209(2): 107439, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870903

RESUMO

Chaperonins are ubiquitously present protein complexes, which assist the proper folding of newly synthesized proteins and prevent aggregation of denatured proteins in an ATP-dependent manner. They are classified into group I (bacterial, mitochondrial, chloroplast chaperonins) and group II (archaeal and eukaryotic cytosolic variants). However, both of these groups do not include recently discovered viral chaperonins. Here, we solved the symmetry-free cryo-EM structures of a single-ring chaperonin encoded by the gene 246 of bacteriophage OBP Pseudomonas fluorescens, in the nucleotide-free, ATPγS-, and ADP-bound states, with resolutions of 4.3 Å, 5.0 Å, and 6 Å, respectively. The structure of OBP chaperonin reveals a unique subunit arrangement, with three pairs of subunits and one unpaired subunit. Each pair combines subunits in two possible conformations, differing in nucleotide-binding affinity. The binding of nucleotides results in the increase of subunits' conformational variability. Due to its unique structural and functional features, OBP chaperonin can represent a new group.


Assuntos
Chaperonina 60/química , Chaperoninas/ultraestrutura , Microscopia Crioeletrônica , Chaperonina 60/ultraestrutura , Chaperoninas/química , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...